FMA Challenge 3: Difference between revisions

Content deleted Content added
Line 92:
[[File:FMA3_3.jpg|600px]][[File:FMA3_4.jpg|600px]]<br>
 
The effect of channel roughness can also be seen in hydrograph outflows from the model downstream boundary (refer figure below).
The effect of channel roughness can also be seen in hydrograph outflows from the model downstream boundary. Of particular interest is that reducing the n value to 0.1 has a significant effect on the arrival time of the flood waters at the model outlet (much earlier), and reduces the volume of water flowing onto the floodplain by around 20% due to the higher conveyance of the creek. Also of interest is that for the n=0.2 scenario, some overbank floodwaters return to the main creek near the model outlet causing a delayed second rise in the outlet flow hydrographs as illustrated in the chart further below. This effect does not occur for the n=0.1 scenario, with all overbank floodwaters remaining on the floodplain.<br>
 
The effect of channel roughness can also be seen in hydrograph outflows from the model downstream boundary. Of particular interest is that reducing the n value to 0.1 has a significant effect on the arrival time of the flood waters at the model outlet (much earlier), and reduces the volume of water flowing onto the floodplain by around 20% due to the higher conveyance of the creek. Also of interest is that for the n=0.2 scenario, some overbank floodwaters return to the main creek near the model outlet causing a delayed second rise in the outlet flow hydrographs as illustrated in the chart further below. This effect does not occur for the n=0.1 scenario, with all overbank floodwaters remaining on the floodplain.<br>