TUFLOW 2D Hydraulic Structures: Difference between revisions

Content deleted Content added
No edit summary
No edit summary
Line 7:
 
= 2D Bridge Modelling in TUFLOW - Overview =
The TUFLOW 2D solution explicitly predicts the majority of “macro” losses due to the expansion and contraction of water through a constriction, or around a bend, provided the resolution of the grid is sufficiently fine (<u>[httphttps://www.tuflow.com/Download/Publications/Flow%20Through%20an%20Abrupt%20Constriction%20-%202D%20Hydrodynamic%20Performance%20and%20Influence%20of%20Spatial%20Resolution,%20Barton,%202001.pdf Barton, 2001]; [httphttps://www.tuflow.com/Download/Publications/Modelling%20of%20Bends%20and%20Hydraulic%20Structures%20in%20a%202D%20Scheme,%20Syme,%202001.pdf Syme, 2001]; [httphttps://www.tuflow.com/Download/Technical_Memos/Modelling%20Bridge%20Piers%20in%202D%20using%20TUFLOW.pdf Ryan, 2013]</u>). Where the 2D model is not of fine enough resolution to simulate the “micro” losses (e.g. from bridge piers, vena contracta, losses in the vertical (3rd) dimension), additional form loss coefficients and/or modifications to the cells widths and flow height need to be added.
==Contraction/Expansion Losses (“Macro” Losses)==
Loss of energy is caused by the flow contraction during the expansion of water after the vena-contracta inside a bridge section and the flow expansion downstream a bridge. As discussed above, this type of "macro" losses can be explicitly resolved by the TUFLOW 2D solver, provided that a proper turbulence model and mesh size are used. Below is an example of the 2D modelling of flow contraction/expansion at a pair of bridge abutments.
Line 52:
This table can be used to estimate the deck form loss coefficient based on the bridge design (hB/T). The solid portion of the guard rails (blockage * rail depth) can be added to T in addition to the deck thickness to calculate hB/T. For bridge with more complicated designs (e.g. girders), higher form loss might be required due to the higher surface roughness of the bridge.
 
'''NOTE''': This form loss value should not be confused with the value of 1.56 used in the pressure flow approached adopted in <u>[[1D_Bridges | TUFLOW 1D "B" and "BB" bridge]]</u>. TUFLOW 1D bridge pressure flow approach is based on the section 4.13.2 "All Girders in Contact with Flow (Case II)" of ''Guide to Bridge Technology Part 8: Hydraulic Design of Waterway Structures'' (AUSTROADS, 2019). The original hydraulic experiment conducted by <u>[httphttps://hdl.handle.net/10217/39009 Liu et al (1957)]</u> in a laboratory flume with a pair of bridge abutments and a deck. The flow conditions were similar to orifice flow due to the high blockage ratio caused by the abutments and the deck. When modelling bridges in 2D, the contraction/expansion losses caused by the abutments would be handled explicitly by the 2D solver, so a value 1.56 can lead to duplication of the contraction/expansion losses caused by the bridge abutments.<br>
<br>