TUFLOW Version Backward Compatibility

From Tuflow
Revision as of 03:25, 19 September 2015 by Chris Huxley (talk | contribs)
Jump to navigation Jump to search


2013-12-XX Builds
2013-12-AA New default settings – see Defaults == PRE 2013-12 for a list of the commands that have changed in their default setting. Set Defaults == PRE 2013-12 if similar results are required to the 2012-05 release.
2013-12-AC The default setting for Link 2D2D Approach has changed. Set Link 2D2D Approach == METHOD B to achieve the same results as Builds 2013-12-AA and 2013-12-AB. See Link 2D2D Approach for more information.
2011-09-XX and 2012-05-XX Builds
2012-05-AA New default settings – see Defaults == PRE 2012-05 for a list of the commands that have changed in their default setting. Set Defaults == PRE 2012-05 if similar results are required to the 2011-09 or 2010-10 releases.
The approach to the sizing of automatic manholes and the application of losses has been enhanced. Set Manhole Approach == Method A to achieve the same results as Build 2011-09-AA.
2011-09-AA The optimised compiler code is treated differently for Single Precision builds producing slightly different results (fractions of a mm) for some models. No workaround.
2010-10-XX Builds
2010-10-AA New Intel Fortran Compiler version produces slightly different results (usually fractions of a mm). No workaround.
w32 and w64 versions will give slightly different results for the same simulation. No workaround. Use the same platform (w32 or w64) for all simulations. Use Model Platform to force which platform should be used.
New default settings – see Defaults == PRE 2010-10 for a list of the commands that have changed in their default setting. Set Defaults == PRE 2010-10 if similar results are required to the 2008-08 or 2009 07 releases.
Generation of TINs for polygons in Read GIS Shape layers is more robust and uses an improved approach. In rare cases, the TIN would fail and TUFLOW would abort the start-up. No workaround.
2008-08-XX and 2009-07-XX Builds
2008-08-AC The default setting for Shallow Depth Stability Factor has changed. Set Shallow Depth Stability Factor == 3 for models without direct rainfall to achieve the same results as Builds 2008-08-AA and 2008-08-AB. See Shallow Depth Stability Factor for more information.
2008-08-AA
Uses a new set of defaults for a number of commands (see Defaults ). The new defaults produce slightly different results, and very slight differences also occur between the three versions offered. For established models run using the 2007-07-XX builds, use Defaults == PRE 2008-08 to use the default settings used by the 2007-07-XX builds. Testing of a range of models has shown zero change in results if Defaults == PRE 2008-08 switch is set, and the Compaq Fortran compiled version (cSP) is used. Each of the new default settings and their effects are discussed in the rows below.
The method for interpolating n values where the 2D Manning’s n varies with depth has been enhanced from a linear interpolation of the M (1/n) value to a spline interpolation of the n value. See Bed Resistance Depth Interpolation. Generally has little effect other than when the flow is predominantly in the depth range that the n value is varying. The new approach offers a smoother transition in n values from one depth to the other.
The default viscosity coefficient is now a combination of a 0.2 Smagorinsky and 0.1 constant coefficient, and there are some enhancements to the application of the viscosity term. See Viscosity Coefficient. This has slight effect for the majority of models. For fine grid models (<2m cell size) with low bed resistance and significant variations in velocity vectors the effect is more pronounced but is still slight.
Inertia and viscosity terms are now not transferred across dry cell sides when constructing the coefficients for the solution arrays. This was having the effect of generating a circulation on the other side of the wall (albeit a very weak one), which of course shouldn’t happen! Generally little effect, but can have some minor influence for urban models where buildings and fences are modelled as solid thin Z lines.
1D weir flow has been improved as the water level difference across the weir approaches zero. The new method is more stable. See Weir Flow. Very little difference other than improved stability.
Incorporates minor improvements for transitioning between Regimes A and B, and between inlet and outlet controlled regimes, for circular culverts. Very little difference other than improved stability.
The new automatic selection of cells for 2D SX connections using the 1d_nwk Conn_1D_2D attribute may choose more than one 2D cell. Very little difference other than improved stability at the pit 2D connections.
2007-07-XX Builds
2007-07-AA
Uses a new set of defaults for a number of commands (see Defaults). The new defaults may produce slightly different results. For established models run using the 2006-06-XX builds, use Defaults == PRE 2007-07-AA to use the default settings used by the 2006-06-XX builds. Testing of a range of models has shown zero change in results if Defaults == PRE 2007-07-AA switch is set. Each of the new default settings and their affects are discussed in the rows below.
Change Zero Material Values to One == OFF (previously ON) Will not cause different results if a Set Mat == 1 is specified before other material settings in the .tgc file, or if every cell has been assigned a material value.
Inside Region == Method B (previously Method A) Testing thus far has not shown any difference between the two methods (other than the substantial gains in processing time of polygons).
Line Cell Selection == Method D (previously Method C) May change results slightly, but improved stability and a smoother water levels along HX lines result.
VG Z Adjustment == MAX ZC (previously ZC) May change results slightly, but stability should be significantly enhanced in some situations.
Bed Resistance Cell Sides == INTERROGATE (previously AVERAGE M) Will influence results, usually slightly, but more pronounced where there are sudden changes in Manning’s n values such as in the urban environment.
Culvert Flow == Method D (previously Method C)

Culvert Critical H/D == OFF (previously Culvert Critical H/D == 1.5)

The most significant influences are the selection of upstream or downstream controlled regimes depending on the H/D ratio, and the bug fix relating to Regime E if Structure Losses == ADJUST. Offers improved stability, better convergence for Regime C and smoother transitioning between some regimes.
Changed the setting of the default width (if eN1 < 0.001) of automatic weirs over R and C channels (i.e. RW and CW) to be the diameter/width multiplied by the number of culverts (previously, the width was not multiplied by the number of culverts). For backward compatibility, original weir width can be set by manually setting the eN1 attribute to the Diameter_or_Width attribute value of the culvert.
Bug fix that when using a restart file TUFLOW occasionally set the 2D FC bridge deck additional loss value incorrectly. No backward compatible workaround provided.
Bug fix that incorrectly set the water levels on dried VG cells (only applies to simulations with source inflows, e.g. SA or RF, somewhere within in the model). May cause slight changes in results. Backward compatibility provided if Defaults == PRE 2007-07-AA is set (noting that setting this command reinstates the bug). This bug also causes the mass error calculations to falsely give a mass error that is not occurring.
Fixed bug that did not correctly apply the reduction in conveyance for a FC BD (bridge deck) of FD (floating deck) cell using the 2d_fc Mannings_n attribute. Backward compatibility applied if Defaults == PRE 2007-07-AA is set, however, note that this reinstates the bug and the resistance to flow at FC BD and FD cells may need to be reviewed. Indications are that only minor changes in results occur. The flow area under 2D FC BD and FD cells is correctly calculated.