1D-2D Flood Modeller-TUFLOW: Difference between revisions
Content deleted Content added
No edit summary |
No edit summary |
||
| (15 intermediate revisions by 2 users not shown) | |||
Line 1:
<ol>
=Introduction=
TUFLOW models can be configured to dynamically link to Flood Modeller
<br>
Depending on the water level in the surrounding 2D cells, flow can either enter or leave the HX cells. The volume of water entering or leaving the 2D boundary is added or subtracted from the 1D Flood Modeller model to preserve volume.
<br>
[[File:1d 2d FM link 01.jpg|800px]]
<br>
Once the water level in Flood Modeller exceeds the elevation in the boundary cell, water can enter or leave the model. Similar to a Flood Modeller lateral spill or lateral inflow, the discharge is distributed laterally along the length of the HX line. Note that it is the elevation of the HX boundary cell centres that determines when the spill starts to occur and not the cross section within Flood Modeller. If there is a levee or flood defence, it is important that we use breaklines in the model to ensure that the elevations of the 2D cells are consistent with the levee crest. The next four images show a section view of the 1D/2D link and how this may progress during a flood event.<br>
<br>
[[File:M04 1d2d 01.png|300px]]
Line 16 ⟶ 14:
[[File:M04 1d2d 04.png|300px]]
Often HX lines are located along the top of
=Building a Flood Modeller-TUFLOW 1D-2D HX Connection=
Flood Modeller and TUFLOW will be considered linked if a Flood Modeller node in a 1d_x1D layer is snapped to a TUFLOW CN line which in turn is snapped to a TUFLOW HX line in a 2d_bc file. ‘CN’ or connection lines read the water level from Flood Modeller and transfers this to the HX line.
<br>
Line 25 ⟶ 23:
<br>
The digitised direction of the HX and CN lines is not important. The CN lines however should be digitised approximately perpendicular to the direction of flow. Two CN lines are digitised for each node and snapped to the HX boundary lines along the left and right banks at vertices. Both CN and HX lines are digitised within the same 2d_bc file, on a basic approach, you only need to input the '''type''' attribute (either '''CN''' or '''HX'''). It is also recommended to input an '''f''' attribute value of '''1''' for CN lines for clarity, however if left at zero TUFLOW will by default change this value to 1. There are a range of Flags that can be used within the 2d_bc file, also D values to change elevations of the link cells and also A values to change the storage across the cells. Further information on these can be found within the <u>[https://docs.tuflow.com/classic-hpc/manual/latest/ TUFLOW
<br>
The HX boundary lines should be digitised along the top of each bank such that the width between the lines approximately correlates to the width of the 1D channel. This is important so as not to either over/under compensate flow area between the two solvers.
Line 37 ⟶ 35:
[[File:FM_junction.jpg|900px]]
[[File:FMT 1D-2D Broken HX Line.JPG|900px]]
<br>
=Building a Flood Modeller-TUFLOW 1D-2D SX Connection=
Flood Modeller can also be dynamically linked to outflow directly to the 2D TUFLOW domain at the start or end of a Flood Modeller reach. This can relate to tributary channels, small drainage channels, and also the main channel if exiting into a 2D estuarine environment for example.
<br>
The image below shows the representation within Flood Modeller and TUFLOW of a simple flume model. As you can see in Flood Modeller, the end open channel section '''FMT_003''' links directly to a spill unit, housing the same cross-section data, which then links to a dummy HT boundary unit. This dummy unit is left empty and works as a link between Flood Modeller and TUFLOW. To connect the Flood Modeller 1D network to TUFLOW, similar to the section above, the open channel section is linked via a 1D node and 2d_bc CN/HX connection. The SX link comes into play by having another 1D node (which, for clarity, it is recommended having a separate file to the Flood Modeller Nodes) which has the same ID as the dummy HT boundary. Remember that Flood Modeller is case sensitive so name exactly as is in Flood Modeller. As the connection between the open channel section '''FMT_003''' and the dummy boundary happens in Flood Modeller, no literal link is needed between these in the TUFLOW GIS files. All that is needed otherwise is a 2d_bc file with a CN/SX link snapped to the dummy boundary node, this again can be in a separate file to the CN/HX links for clarity or can be in the same file.
<br>
[[File:FMT LINK SX.png|900px]]
=Checking the Link=
As with all aspects of TUFLOW modelling, checking your files are being applied as intended is important. The check file to use in the case of 1D 2D linking is of course the 1d_2d_check. In the image below you can see the channel being modelled and the Flood Modeller nodes connected via a CN/HX link discussed earlier. The 1d_2d_check file is shown by the blue grid cells. This shows the user the cells being picked up by the HX link lines, it also provides a wealth of information such as the primary Flood Modeller node it links to and if any flags where used in the HX lines for example. Below the image shows the elevation picked up at each link cell, which can be extremely useful in finding any abnormally low cells that have perhaps been incorrectly picked up and are subsequently leading to out of bank flow which wouldn't occur in reality.
[[File:1d2d FMT check.png|900px]]
=Summary=
1D Flood Modeller and 2D TUFLOW models can be dynamically coupled to enable a bi-directional connection between the two software using either HX or SX links. The linkage take place when an Flood Modeller node is snapped to a HX or SX boundary, this can be via a CN connection link. The dynamic coupling allows full integration between Flood Modeller 1D networks and full floodplain modelling in TUFLOW 2D to capture complex overland flows.
| |||