Content deleted Content added
|
|
|
A finite volume scheme uses a mesh that defines interconnected volumes (or cells). The solution data for each cell represents the volume integral (or average) of a conserved property (e.g. mass and momentum) over that cell. The fluxes of the conserved values across cell faces are computed, and the time derivatives for each cell computed according to the total sum of inflows and outflows. The solution scheme is a little more involved to implement, but is guaranteed to be conservative, the model-wise integral of conserved properties remains constant save for internal sources and boundary fluxes.<br>
TuflowTUFLOW classic is an implicit finite difference scheme. This means that it can use larger timesteps, but can miss short time-scale physics and it is non-conservative. The exact scheme used (Stelling and Syme) becomes reasonably conservative when the timestep is appropriate and the number of convergence iterations are sufficient. However, as the scheme utilises a matrix solution, it requires a particular cell ordering for computations - and this makes it very difficult to parallelise. This is why TUFLOW classic remains a single CPU-core process.<br>
TuflowTUFLOW HPC utilises an explicit finite volume scheme. This means that it has to use smaller timesteps and is guaranteed to capture the shortest time-scale physics that the given spatial resolution admits. The solution is conserving of mass and momentum to numerical precision. The scheme is not as computationally efficient as the implicit finite difference scheme of TUFLOW classic, if forced to execute on a single CPU core it is many times slower than classicClassic. However, as the cell-by-cell computation of fluxes and derivatives are completely independent, the scheme is well suited to utilise highly parallelised compute hardware such as modern GPUs. The end result is that with a good GPU, TUFLOW HPC can be up to 100 times faster than classic for some models.<br>
== Do I require a TUFLOW licence to create TUFLOW inputs and view results from a TUFLOW simulation? ==
No, a TUFLOW licence is only needed to run simulations. All TUFLOW inputs and outputs use free open formats that are read and editable by third party software, for example QGIS and Notepad++:
|