Direct Rainfall (Rain on Grid) Modelling Guidance: Difference between revisions
Content deleted Content added
Line 57:
:::* Exclude buildings from the rainfall polygon: This removes the rainfall from the model that would otherwise fall on the buildings. This approach will under-estimate the amount of rainfall entering the model. If the collective building footprint area is negligible in comparison to the entire model, this approach may be acceptable.
:::* Exclude buildings from the rainfall polygon and represent the rainfall that would be falling on the building using <font color="blue"><tt>Read GIS SA RF</tt></font> inflow boundaries. To do this, digitise a 2d_sa_rf polygon for each building (with a buffer of one of more 2D cells) where the building footprint has been excluded from the direct rainfall region. The 2d_sa_rf input will convert the input rainfall hyetograph to flow, deposited initially on the lowest 2D cell, then for subsequent timesteps distributed over all wet cells, within the 2d_sa_rf regions (ie. on the ground surrounding the building). Refer to TUFLOW <u>[[TUFLOW_Example_Models#Boundary_Condition_Options | Example model EG03_005.tcf]]</u> for a demonstration of this inflow boundary condition option.
:::* Exclude buildings from the rainfall polygon and represent the rainfall that would fall on the building using <font color="blue"><tt>Read GIS SA RF PITS</tt></font> inflow boundaries. This approach is similar to the previous method, although instead of directing the inflow to the ground surrounding the building, it is directed into the sub-surface drainage (underground pipe) system. To implement this approach every 2d_sa_rf polygon must encompass at least one 1D pit. If multiple 1D pits are within a single
== What is the recommended cell wet/dry depth for direct rainfall models? ==
|