TUFLOW 1D Channels and Hydraulic Structures: Difference between revisions

Content deleted Content added
Created page with "=Introduction= The objective of the following pages is to supplement the TUFLOW manual and provide additional modelling guidance on 1D hydraulic channels. =1D Channel Types=..."
 
Line 97:
Occasionally there are situations where non-standard entrance and exit loss values are needed. A good example is if the approach or departure flow is skewed to the culvert direction. In these situations there may also be a significant bend (energy) loss occurring as the water changes direction entering or leaving the structure. To account for this the modeller may need to increase the entrance and/or exit loss values.<br>
 
By default, TUFLOW adjusts the entrance and exit losses of 1D structures flowing sub-critical every timestep based on the approach/departure velocities for 1D-1D-1D and with a new feature in the 2020-10-AA build for 2D-1D-2D. The entrance losses are adjusted based on an empirical relationship from flume testing whilst the exit loss equation is theoretically derived as mentioned above - see Section 5.7.6 from the <u>[https://www.tuflow.com/Download/TUFLOW/Releases/2018-03/TUFLOW%20Manual.2018-03.pdf 2018 TUFLOW Manual]</u>. The modeller should be familiar with the approach taken by the software they are using as some software either don't adjust for approach/departure velocities at structures (will overestimate losses using standard values) and some may apply a limiting loss thereby not allowing the losses to sufficiently reduce.
 
TUFLOW, by default, allows the losses to reduce to effectively a zero loss coefficient (i.e. 0.0001). A zero loss occurs where the approach and departure velocity is the same as the structure velocity. For example, a clear-spanning bridge over a concrete lined channel with the water level below the bridge deck will experience no energy losses until the bridge deck is surcharged so if your software is applying unadjusted or limited energy loss coefficients there will be an unrealistic energy loss at the structure for flow below the bridge deck. For culverts, in most cases there will be some losses as it is rare that the channel is of identical shape and slope to the culvert with usually the culvert being more constrictive and therefore a higher velocity so the adjusted coefficients are nearly always non-zero. At the other extreme is flow from or into a near still body of water (e.g. a lake or the ocean). In this situation the loss coefficient(s) will not be reduced and the maximum energy loss possible should occur.